豫东小生
新手上路
发短消息
关注Ta
积分 -667
帖子 62
威望 1846 个
礼品券 8 个
专家指数 -977
注册 2011-11-28 专业方向
通信
回答问题数 0
回答被采纳数 0
回答采纳率 0%
|
|
时隙格式时隙格式指示一个时隙中每个符号是怎么被使用的。它定义了特殊时隙中,哪些符号用于上行,哪些符号用于下行。在LTE TDD中,如果一个子帧(相当于NR中的一个时隙)被配置为DL或UL,则子帧中的所有符号都应该被用作DL或UL。但在NR中,时隙内的符号可以按如下方式配置。- 我们不需要使用一个时隙内的所有符号(这在LAA子帧中是一个类似的概念,其中只有部分子帧可用于数据传输)。
- 单个时隙可以分成多个连续符号,可以用于DL、UL或Flexible。
理论上,我们可以认为DL符号、UL符号、Flexible符号在一个时隙内的可能组合数几乎是无限的,但3GPP只允许61个预定义的符号组合在一个时隙内,如下表所示。这些预定义的时隙内符号被叫做时隙格式。<38.213-Table 11.1.1-1: Slot formatsfor normal cyclic prefix> D : Downlink, U : Uplink, F :Flexible
| Symbol Number in a slot | Format | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 0 | D | D | D | D | D | D | D | D | D | D | D | D | D | D | 1 | U | U | U | U | U | U | U | U | U | U | U | U | U | U | 2 | F | F | F | F | F | F | F | F | F | F | F | F | F | F | 3 | D | D | D | D | D | D | D | D | D | D | D | D | D | F | 4 | D | D | D | D | D | D | D | D | D | D | D | D | F | F | 5 | D | D | D | D | D | D | D | D | D | D | D | F | F | F | 6 | D | D | D | D | D | D | D | D | D | D | F | F | F | F | 7 | D | D | D | D | D | D | D | D | D | F | F | F | F | F | 8 | F | F | F | F | F | F | F | F | F | F | F | F | F | U | 9 | F | F | F | F | F | F | F | F | F | F | F | F | U | U | 10 | F | U | U | U | U | U | U | U | U | U | U | U | U | U | 11 | F | F | U | U | U | U | U | U | U | U | U | U | U | U | 12 | F | F | F | U | U | U | U | U | U | U | U | U | U | U | 13 | F | F | F | F | U | U | U | U | U | U | U | U | U | U | 14 | F | F | F | F | F | U | U | U | U | U | U | U | U | U | 15 | F | F | F | F | F | F | U | U | U | U | U | U | U | U | 16 | D | F | F | F | F | F | F | F | F | F | F | F | F | F | 17 | D | D | F | F | F | F | F | F | F | F | F | F | F | F | 18 | D | D | D | F | F | F | F | F | F | F | F | F | F | F | 19 | D | F | F | F | F | F | F | F | F | F | F | F | F | U | 20 | D | D | F | F | F | F | F | F | F | F | F | F | F | U | 21 | D | D | D | F | F | F | F | F | F | F | F | F | F | U | 22 | D | F | F | F | F | F | F | F | F | F | F | F | U | U | 23 | D | D | F | F | F | F | F | F | F | F | F | F | U | U | 24 | D | D | D | F | F | F | F | F | F | F | F | F | U | U | 25 | D | F | F | F | F | F | F | F | F | F | F | U | U | U | 26 | D | D | F | F | F | F | F | F | F | F | F | U | U | U | 27 | D | D | D | F | F | F | F | F | F | F | F | U | U | U | 28 | D | D | D | D | D | D | D | D | D | D | D | D | F | U | 29 | D | D | D | D | D | D | D | D | D | D | D | F | F | U | 30 | D | D | D | D | D | D | D | D | D | D | F | F | F | U | 31 | D | D | D | D | D | D | D | D | D | D | D | F | U | U | 32 | D | D | D | D | D | D | D | D | D | D | F | F | U | U | 33 | D | D | D | D | D | D | D | D | D | F | F | F | U | U | 34 | D | F | U | U | U | U | U | U | U | U | U | U | U | U | 35 | D | D | F | U | U | U | U | U | U | U | U | U | U | U | 36 | D | D | D | F | U | U | U | U | U | U | U | U | U | U | 37 | D | F | F | U | U | U | U | U | U | U | U | U | U | U | 38 | D | D | F | F | U | U | U | U | U | U | U | U | U | U | 39 | D | D | D | F | F | U | U | U | U | U | U | U | U | U | 40 | D | F | F | F | U | U | U | U | U | U | U | U | U | U | 41 | D | D | F | F | F | U | U | U | U | U | U | U | U | U | 42 | D | D | D | F | F | F | U | U | U | U | U | U | U | U | 43 | D | D | D | D | D | D | D | D | D | F | F | F | F | U | 44 | D | D | D | D | D | D | F | F | F | F | F | F | U | U | 45 | D | D | D | D | D | D | F | F | U | U | U | U | U | U | 46 | D | D | D | D | D | D | F | D | D | D | D | D | D | F | 47 | D | D | D | D | D | F | F | D | D | D | D | D | F | F | 48 | D | D | F | F | F | F | F | D | D | F | F | F | F | F | 49 | D | F | F | F | F | F | F | D | F | F | F | F | F | F | 50 | F | U | U | U | U | U | U |
| U | U | U | U | U | U | 51 | F | F | U | U | U | U | U | F | F | U | U | U | U | U | 52 | F | F | F | U | U | U | U | F | F | F | U | U | U | U | 53 | F | F | F | F | U | U | U | F | F | F | F | U | U | U | 54 | D | D | D | D | D | F | U | D | D | D | D | D | F | U | 55 | D | D | F | U | U | U | U | U | U | FU | U | U | U | U | 56 | D | F | U | U | U | U | U | D | F | U | U | U | U | U | 57 | D | D | D | D | F | F | U | D | D | D | D | F | F | U | 58 | D | D | F | F | U | U | U | D | D | F | F | U | U | U | 59 | D | F | U | U | U | U | U | D | F | U | U | U | U | U | 60 | D | F | F | F | F | F | U | D | F | F | F | F | F | U | 61 | D | D | F | F | F | F | U | D | D | F | F | F | F | U | 62-255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
为什么我们需要这么多不同类型的时隙格式?显然,这不仅仅是让你的工作变得困难。使NR的调度更加灵活,特别适用于TDD作业。通过应用时隙格式或按顺序组合不同的时隙格式,我们可以实现如下示例中所示的各种不同类型的调度。
DL-heavy transmission with UL part | Slot (e.g, slot format 28) | Slot(e.g, slot format 28) | D | D | D | D | D | D | D | D | D | D | D | D | F | U | D | D | D | D | D | D | D | D | D | D | D | D | F | U |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
UL-heavy transmission with DL Control | Slot(e.g, slot format 34) | Slot(e.g, slot format 34) | D | F | U | U | U | U | U | U | U | U | U | U | U | U | D | F | U | U | U | U | U | U | U | U | U | U | U | U |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Slot aggregation for DL-heavy transmission (e.g, for eMBB) | Slot(e.g, slot format 0) | Slot (e.g, slot format 28) | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | D | F | U |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Slot aggregation for UL-heavy transmission (e.g, for eMBB) | Slot | Slot | D | F | U | U | U | U | U | U | U | U | U | U | U | U | D | U | U | U | U | U | U | U | U | U | U | U | U | U |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TDD DL/UL 常见的配置 当在TDD模式下运行时,我们必须准确地定义何时期望传输,何时期望接收。在LTE TDD中,我们在一个无线帧中定义了7个预定义的UL和DL分配模式。在5G/NR中,我们没有任何预定义的模式。相反,我们可以使用如下所示的几个参数以更灵活的方式定义模式。 
这些参数在3GPP协议38.331 v15.3.0定义,如下:TDD-UL-DL-ConfigCommon ::= SEQUENCE { referenceSubcarrierSpacing SubcarrierSpacing, pattern1 TDD-UL-DL-Pattern, pattern2 TDD-UL-DL-PatternOPTIONAL, ... } TDD-UL-DL-Pattern ::= SEQUENCE { dl-UL-TransmissionPeriodicity ENUMERATED{ms0p5, ms0p625, ms1, ms1p25,ms2, ms2p5, ms5, ms10}, nrofDownlinkSlots INTEGER(0..maxNrofSlots), nrofDownlinkSymbols INTEGER(0..maxNrofSymbols-1), nrofUplinkSlots INTEGER(0..maxNrofSlots), nrofUplinkSymbols INTEGER(0..maxNrofSymbols-1), ..., [[ dl-UL-TransmissionPeriodicity-v1530ENUMERATED {ms3, ms4} OPTIONAL -- Need R ]] } maxNrofSlots INTEGER ::= 320 // Maximum number of slots in a 10 ms period maxNrofSymbols-1 INTEGER ::= 13 //Maximum index identifying a symbol within a slot (14symbols, indexed from 0..13) dl-UL-TransmissionPeriodicity:
Periodicity of the DL-UL pattern. If dl-UL-TransmissionPeriodicity-v1530is conifgured, dl-UL-TransmissionPeriodicity is ignored. //DL-UL模式的周期性。若将dl- ul - transmisperiodici -v1530改为常量,则忽略dl- ul - transmisperiodici。 nrofDownlinkSlots : Number of consecutive full DL slotsat the beginning of each DL-UL pattern //每个DL- ul模式开始处连续的全DL时隙数 nrofDownlinkSymbols : Number of consecutive DL symbols in the beginning of theslot following the last full DL slot //在最后一个满DL时隙后面的时隙的开头的连续DL符号的数目 nrofUplinkSlots : Number of consecutive full UL slots at the end of eachDL-UL pattern //每个DL-UL模式末尾连续的完整UL时隙数 nrofUplinkSymbols : Number of consecutive UL symbols in the end of the slotpreceding the first full UL slot //在第一个完整的UL时隙之前的时隙末端的连续UL符号的数目
周期性传输
UL/DL配置的适用周期(P)取决于numerology(n_ref)。这可以总结为一个表,如下所示。根据38.213-11.1中的描述创建了这个表.
P(ms) | u_ref (scs Khz) | Applicable u | P/20 | Number of Slots in a P | 0 | 1 | 2 | 3 | 4 | 0.5 | Not described |
| 40 |
| 1 | 2 | 4 | 8 | 0.625 | 3(120) | 3,4 | 32 |
|
|
| 5 | 10 | 1.25 | 2(60), 3(120) | 2,3,4 | 16 |
|
| 5 | 10 | 20 | 2.5 | 1(15), 2(60), 3(120) | 1,2,3,4 | 8 |
| 5 | 10 | 20 | 40 | 5.0 | Not described |
| 4 | 5 | 10 | 20 | 40 | 80 | 10.0 | Not described |
| 2 | 10 | 20 | 40 | 80 | 160 |
如果TDD-UL-DL-ConfigCommon没有配置怎么办? UE决定每个时隙是上行还是下行,每个时隙内的符号分配完全由DCIs决定,如38.213-11.1时隙配置中所述。 如果一个UE没有配置为监控PDCCH DCI格式2 - 0,一个时隙的一组符号被高层参数TDD-UL-DL-ConfigurationCommon或TDD-UL-DL-ConfigDedicated灵活指示,当被提供给UE时,或者当TDD-UL-DL-ConfigurationCommonTDD-UL-DL-ConfigDedicated不被提供给UE时 如果UE接收到DCI格式1_0、DCI格式1_1或DCI格式0_1的相应指示,则在时隙的符号集中接收PDSCH或CSI-RS 如果UE接收到DCI格式0_0、DCI格式0_1、DCI格式1_0、DCI格式1_1或DCI格式2_3的相应指示,则UE在时隙的符号集中传输PUSCH、PUCCH、PRACH或SRS
Resource Grid 资源栅格
下面是NR资源栅格,有点类似LTE,但是NR根据numerology不同而变化。 
上下行最小、最大RB如下表(它与LTE不一样)
< 38.211 v1.0.0 Table4.4.2-1: Minimum and maximum number of resource blocks.> 
下面是将表4.4.2-1中的下行部分转换成频率带宽的表格,只是为了方便理解一个UE / gNB需要为单个carrier支持的最大RF带宽是多少.
u | min RB | Max RB | sub carrier spacing (kHz) | Freq BW min (MHz) | Freq BW max (MHz) | 0 | 24 | 275 | 15 | 4.32 | 49.5 | 1 | 24 | 275 | 30 | 8.64 | 99 | 2 | 24 | 275 | 60 | 17.28 | 198 | 3 | 24 | 275 | 120 | 34.56 | 396 | 4 | 24 | 138 | 240 | 69.12 | 397.44 |
SS/PBCH
SS和PBCH占用4个符号,是放在一起作为一个块一起传输的。
< Frequency Domain Resource Allocation >频域资源配置
SS/PBCH块资源分配的总体描述在38.211 -7.4.3.1 SS/PBCH块的时频结构中进行了描述,以下是该规范的概要- SS/PBCH block consists of 240 contiguous subcarriers (20 RBs) //SSB包含240个连续的子载波(240/12=20RB)
- The subcarriers are numbered in increasing order from 0 to 239 within the SS/PBCH block //240个子载波从0到239编号
- The UE may assume resource elements denotedas 'Set to 0' in Table 7.4.3.1-1 are set to zero. //UE假定RE是从0开始标识第一个RE的
- Subcarrier 0 in an SS/PBCH block corresponds to subcarrier k_ssb(k0 in older spec) in Common Resource Block //载波0是相对应的集里一个k_ssb(K0)
- is obtained from the higher-layer parameter OffsetToPointA //从高层参数OffsetToPointA中计算得到
- offset-ref-low-scs-ref-PRB corresponds to the FrequencyInfoDL.absoluteFrequencyPointA. Data type is ARFCN-ValueNR and the range of the value is INTEGER (0..3279165) in integer. // offset-ref-low-scs-ref-PRB对应于FrequencyInfoDL.absoluteFrequencyPointA,数据类型为ARFCN-ValueNR,取值范围为整数(0..3279165)
- There are two types of SS/PBCH Block //有两种类型的SSB块
- k_ssb(k0 in older spec) = {0,1,2,...,23}
- 4 LSB bits of k_ssb value can informed to UE via ssb-subcarrierOffset in MIB // 4 LSB位k_ssb value可以通过MIB告知UE
- The MSB bit is informed to UE via a bit within the PBCH Data () // MSB位是通过PBCH 数据 () 中的一个bit来通知UE的
- is expressed in terms of 15 Khz subcarrier spacing//表示15KHZ子载波间距
- u (numerology) = {0,1}, FR1 (sub 6 Ghz)
- is expressed in terms of 15 Khz subcarrier spacing//用15KHZ子载波间距表示
- k_ssb(k0 in older spec) = {0,1,2,...,11}
- the whole k_ssb value can be informed to UE via ssb-subcarrierOffset in MIB. //整个的k_ssb可以通过MIB中的ssb-subcarrierOffset告知UE
- is expressed in terms of the subcarrier spacing provided by the higher-layer parameter subCarrierSpacingCommon in MIB.//子载波间距通过MIB高层参数subCarrierSpacingCommon来表达
- u (numerology) = {3,4}, FR2 (mmWave)
- is expressed in terms of 60 Khz subcarrier spacing//表示60K子载波间距
- 下表显示了SSB块的的时域(OFDM符号数)和频域(子载波数)。
< 38.211- Table 7.4.3.1-1:Resources within an SS/PBCH block for PSS, SSS, PBCH, and DM-RS for PBCH > 
此表可以在资源栅格中表示,如下所示。注意,PBCH DM-RS的位置随v变化,v值随PCI变化
< Time Domain Resource Allocation >时域资源配置下表显示了传输SS/PBCH的第一个OFDM符号。这是基于38.213 - 4.1小区搜索。对于带有SS/PBCH块的半帧,根据SS/PBCH块的子载波间距确定候选SS/PBCH块的数目和第一符号索引如下:
< Start Symbols for each subcarrierspacing and frequency > Subcarrier Spacing | OFDM Symbol (s) | f <= 3 Ghz | 3 Ghz < f <= 6 Ghz | 6 Ghz < f | Case A : 15 KHz | {2,8} + 14 n | n = 0,1 | n = 0,1,2,3 |
| s = 2,8,16,22 (Lmax = 4) | s = 2,8,16,22,30,36,44,50 (Lmax = 8) |
| Case B : 30 Khz | {4,8,16,20}+28n | n = 0 | n = 0,1 |
| s = 4,8,16,20 (Lmax = 4) | s = 4,8,16,20,32,36,44,48 (Lmax = 8) |
| Case C : 30 Khz | {2,8} + 14 n | n = 0,1 | n = 0,1,2,3 |
| s = 2,8,16,22 (Lmax = 4) | s = 2,8,16,22,30,36,44,50 (Lmax = 8) |
| Case D : 120 Khz | {4,8,16,20} + 28n |
|
| n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18 |
|
| s = 4,8,16,20, 32,36,44,48, 60,64,72,76, 88,92,100,104, 144,148,156,160, 172,176,184,188, 200,204,212,216, 228,232,240,244, 284,288,296,300, 312,316,324,328, 340,344,352,356, 368,372,380,384, 424,428,436,440, 452,456,464,468, 480,484,492,496, 508,512,520,524 (Lmax = 64) | Case E : 240 Khz | {8, 12, 16, 20, 32, 36, 40, 44} + 56n |
|
| n=0, 1, 2, 3, 5, 6, 7, 8 |
|
| s = 8,12,16,20, 32,36,40,44, 64,68,72,76, 88,92,96,100, 120,124,128,132, 144,148,152,156, 176,180,184,188, 200,204,208,212, 288,292,296,300, 312,316,320,324, 344,348,352,356, 368,372,376,380, 400,404,408,412, 424,428,432,436, 456,460,464,468, 480,484,488,492 (Lmax = 64) | 以下是每个用例的SSB传播的例子。为简单起见,我将SSB块的频域位置设置在系统带宽的底部,但实际上频域位置可以更改为其他位置(例如:系统带宽的中心频率)。这些例子的主要目的是显示每个用例的时域位置(传输模式)。在实际部署中,SSB的频域位置很可能(但不一定)位于中心频率附近。下面的示例展示了如何将上面的表与下面示例中显示的SSB传输图关联起来。

< Case A: f <= 3 Ghz >

< Case A: 3 Ghz < f <= 6 Ghz > 
< CaseB : f <= 3 Ghz >

< CaseB : 3 Ghz < f <= 6 Ghz > 
< CaseC : f <= 3 Ghz >

< CaseC : 3 Ghz < f <= 6 Ghz >

<Case D : 6 Ghz < f >

<Case E : 6 Ghz < f >


扫码关注weixin公众号,更多扎实技术资料等着你!
扫码关注5G通信官方公众号,免费领取以下5G精品资料
1、回复“YD5GAI”免费领取《中国移动:5G网络AI应用典型场景技术解决方案白皮书》
2、回复“5G6G”免费领取《5G_6G毫米波测试技术白皮书-2022_03-21》
3、回复“YD6G”免费领取《中国移动:6G至简无线接入网白皮书》
4、回复“LTBPS”免费领取《《中国联通5G终端白皮书》》
5、回复“ZGDX”免费领取《中国电信5G NTN技术白皮书》
6、回复“TXSB”免费领取《通信设备安装工程施工工艺图解》
7、回复“YDSL”免费领取《中国移动算力并网白皮书》
8、回复“5GX3”免费领取《 R16 23501-g60 5G的系统架构1》
|
|
|
|
|